Decreased Photosystem II Core Phosphorylation in a Yellow-Green Mutant of Wheat Showing Monophasic Fluorescence Induction Curve.

AUTOR(ES)
RESUMO

In the present work we study the regulation of the distribution of the phosphorylated photosystem II (PSII) core populations present in grana regions of the thylakoids from several plant species. The heterogeneous nature of PSII core phosphorylation has previously been reported (M.T. Giardi, F. Rigoni, R. Barbato [1992] Plant Physiol 100: 1948-1954; M.T. Giardi [1993] Planta 190: 107-113). The pattern of four phosphorylated PSII core populations in the grana regions appears to be ubiquitous in higher plants. In the dark, at least two phosphorylated PSII core populations are always detected. A mutant of wheat (Triticum durum) that shows monophasic room-temperature photoreduction of the primary quinone electron acceptor of PSII as measured by chlorophyll fluorescence increase in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and by fluorescence upon flash illumination in intact leaves also lacks the usual distribution of phosphorylated PSII core populations. In this mutant, the whole PSII core population pattern is changed, probably due to altered threonine kinase activity, which leads to the absence of light-induced phosphorylation of CP43 and D2 proteins. The results, correlated to previous experiments in vivo, support the idea that the functional heterogeneity observed by fluorescence is correlated in part to the PSII protein phosphorylation in the grana.

Documentos Relacionados