Definition and Properties of Disequilibrium Statistics for Associations between Nuclear and Cytoplasmic Genotypes

AUTOR(ES)
RESUMO

We define and establish the interrelationships of four components of statistical association between a diploid nuclear gene and a uniparentally transmitted, haploid cytoplasmic gene: an allelic (gametic) disequilibrium (D), which measures associations between alleles at the two loci; and three genotypic disequilibria (D1, D 2, D3), which measure associations between two cytotypes and the three respective nuclear backgrounds. We also consider an alternative set of measures, including D and the residual disequilibrium ( d). The dynamics of these disequilibria are then examined under three conventional models of the mating system: (1) random mating; (2a) assortative mating without dominance (the "mixed-mating model"); and (2b) assortative mating with dominance ("O'Donald's model"). The trajectories of gametic disequilibria are similar to those for pairs of unlinked nuclear loci. The dynamics of genotypic disequilibria exhibit a variety of behaviors depending on the model and the initial conditions. Procedures for statistical estimation of cytonuclear disequilibria are developed and applied to several real and hypothetical data sets. Special attention is paid to the biological interpretations of various categories of allelic and genotypic disequilibria in hybrid zones. Genetic systems for which these statistics might be appropriate include nuclear genotype frequencies in conjunction with those for mitochondrial DNA, chloroplast DNA, or cytoplasmically inherited microorganisms.

Documentos Relacionados