Degradation of 2-Chloroethylvinylether by Ancylobacter aquaticus AD25 and AD27

AUTOR(ES)
RESUMO

Incubation of five different β-chloroethers with slurries prepared from brackish water sediment or activated sludge revealed that bis(2-chloroethyl)ether and 2-chloroethylvinylether (2-CVE) were biodegradable under aerobic conditions. After enrichment, two different cultures of Ancylobacter aquaticus that are capable of growth on 2-CVE were isolated. Both cultures were also able to grow on 1,2-dichloroethane. The cells contained a haloalkane dehalogenase that dehalogenated 2-CVE, 2-chloroethylmethylether, 2-bromoethylethylether, and epichlorohydrin. Experiments with cell extracts indicated that an alcohol dehydrogenase and an aldehyde dehydrogenase were also involved in the degradation of 2-CVE. This suggests that 2-CVE is metabolized via 2-hydroxyethylvinylether and vinyloxyacetaldehyde to vinyloxyacetic acid. Enzymatic ether cleavage was not detected. 2-CVE was also degraded by chemical ether cleavage, leading to the formation of 2-chloroethanol and acetaldehyde, both of which supported growth. We propose that A. aquaticus strains may be important for the detoxification and degradation of halogenated aliphatic compounds in the environment.

Documentos Relacionados