Degradation of Tobacco Mosaic Virus Movement Protein by the 26S Proteasome

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-β-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.

Documentos Relacionados