Deletion mapping of the sites on the HtrI transducer for sensory rhodopsin I interaction.

AUTOR(ES)
RESUMO

The phototaxis receptor sensory rhodopsin I (SRI) transmits signals through a membrane-bound transducer protein, HtrI. The genes for the receptor and transducer, sopI and htrI, respectively, are normally cotranscribed; however, previous work has established that fully functional interacting proteins are produced when htrI is expressed from the chromosome and sopI is expressed from a different promoter on a plasmid. In this report we show that in the membrane, concentrations of SRI from plasmid expression of wild-type sopI are negligible in the absence of HtrI protein in the cell. This requirement for HtrI is eliminated when sopI is extended at the 5'-end with 63 nucleotides of the bop gene, which encodes the N-terminal signal sequence of the bacteriorhodopsin protein. The signal is cleaved from the chimeric protein, and processed SRI is stable in the HtrI-free membrane. These results suggest a chaperone-like function for HtrI that facilitates membrane insertion or proper folding of the SRI protein. Six deletion constructs of HtrI were examined to localize the interaction sites for its putative chaperone function and for HtrI control of the SRI photocycle, a phenomenon described previously. The smallest HtrI fragment identified, which contained interaction sites for both SRI stability and photocycle control, consisted of the N-terminal 147 residues of the 536-residue HtrI protein. The active fragment is predicted to contain two transmembrane helices and the first approximately 20% of the cytoplasmic portion of the protein.

Documentos Relacionados