Deletion mutants that affect expression of Epstein-Barr virus nuclear antigen in COS-1 cells after gene transfer with simian virus 40 vectors containing portions of the BamHI K fragment.

AUTOR(ES)
RESUMO

We have identified sequences that affect the efficient expression of Epstein-Barr virus nuclear antigen (EBNA 1) when the structural portion of its gene, found within the 2.9-kilobase-pair BamHI/HindIII fragment called Ilf, is expressed from a simian virus 40 vector. A set of nested deletions at the BamHI end of the fragment was constructed by using BAL 31 digestion, the addition of linkers, and ligation into pSVOd. The mutants were tested for their ability to express antigen in COS-1 monkey cells by using indirect immunofluorescence and immunoblotting. Deletion endpoints were determined by DNA sequencing of the 5' ends of the mutants. The deletion mutants could be subclassified into four groups based on their ability to express EBNA polypeptide. Mutants that retain more than 106 base pairs upstream from the start of the open reading frame in Ilf exhibit antigen expression indistinguishable from that of wild type. Mutants that invade the structural gene by 1,115 or more bases destroy antigen expression. Mutants that alter the splice acceptor site or invade the open reading frame by a short distance make antigen at a markedly lower frequency. There are three mutants, whose deletions map at -78, -70, and -44 base pairs upstream of the open reading frame, that make reduced levels of EBNA. Since these three mutants differ in the extent to which EBNA expression is impaired, the data suggest that there are several critical regions upstream of the open reading frame that regulate EBNA expression in COS-1 cells. It is not known whether these regulatory sequences, which would be located in an intron in the intact genome, play any role in the expression of EBNA in infected lymphocytes.

Documentos Relacionados