Development and characterization of essential fatty acid deficiency in human endothelial cells in culture.

AUTOR(ES)
RESUMO

We induced an essential fatty acid deficiency (EFAD) in human umbilical vein endothelial cells by culture in medium with 20% (vol/vol) delipidated fetal calf serum. EFAD, reflected by decreased cellular linoleic acid (18:2 omega 6) and arachidonic acid (20:4 omega 6) and emergence of the oleic acid derivative 5,8,11-eicosatrienoic acid (20:3 omega 9; Mead's acid), was evident after 1 week of culture and became pronounced after 2 weeks. Beyond that time point, control cells (cultured in 20% normal fetal calf serum) grew deficient of 18:2 omega 6, and EFAD cells died. 18:2 omega 6 addition to EFAD cells resulted in dose-dependent increases of 18:2 omega 6 and 20:4 omega 6. 20:4 omega 6 or 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) additions resulted in normalization of these acids, and conversion of 20:5 omega 3 to 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3) was noted. Agonist-induced increases in concentrations of prostacycline (prostaglandin I2; PGI2) and cytosolic Ca2+, [Ca2+]i, were reduced in EFAD cells and not restored by 18:2 omega 6 or 20:4 omega 6 additions. Change of the medium in EFAD cultures 1 day before the experiments decreased 20:3 omega 9 and normalized the PGI2 production and [Ca2+]i changes, whereas addition of 20:3 omega 9 to control cells impaired the [Ca2+]i response, indicating a suppressive effect of 20:3 omega 9. Thus, EFAD in endothelial cells is associated with abnormalities of eicosanoid and second-messenger production partly attributable to 20:3 omega 9 accumulation. Moreover, the gradual emergence of 18:2 omega 6 deficiency in regularly grown control cells underlines the need for careful analysis of fatty acids in long-term cell cultures.

Documentos Relacionados