Direct Inhibitory Effect of Rotavirus NSP4(114-135) Peptide on the Na+-d-Glucose Symporter of Rabbit Intestinal Brush Border Membrane

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The direct effect of a rotavirus nonstructural glycoprotein, NSP4, and certain related peptides on the sodium-coupled transport of d-glucose and of l-leucine was studied by using intestinal brush border membrane vesicles isolated from young rabbits. Kinetic analyses revealed that the NSP4(114-135) peptide, which causes diarrhea in young rodents, is a specific, fully noncompetitive inhibitor of the Na+-d-glucose symporter (SGLT1). This interaction involves three peptide-binding sites per carrier unit. In contrast, the Norwalk virus NV(464-483) and mNSP4(131K) peptides, neither of which causes diarrhea, both behave inertly. The NSP4(114-135) and NV(464-483) peptides inhibited Na+-l-leucine symport about equally and partially via a different transport mechanism, in that Na+ behaves as a nonobligatory activator. The selective and strong inhibition caused by the NSP4(114-135) peptide on SGLT1 in vitro suggests that during rotavirus infection in vivo, NSP4 can be one effector directly causing SGLT1 inhibition. This effect, implying a concomitant inhibition of water reabsorption, is postulated to play a mechanistic role in the pathogenesis of rotavirus diarrhea.

Documentos Relacionados