Disruption of Microtubular Cytoskeleton Induced by Cryptogein, an Elicitor of Hypersensitive Response in Tobacco Cells1

AUTOR(ES)
FONTE

American Society of Plant Physiologists

RESUMO

The dynamics of microtubular cytoskeleton were studied in tobacco (Nicotiana tabacum cv Xanthi) cells in response to two different plant defense elicitors: cryptogein, a protein secreted by Phytophthora cryptogea and oligogalacturonides (OGs), derived from the plant cell wall. In tobacco plants cryptogein triggers a hypersensitive-like response and induces systemic resistance against a broad spectrum of pathogens, whereas OGs induce defense responses, but fail to trigger cell death. The comparison of the microtubule (MT) dynamics in response to cryptogein and OGs in tobacco cells indicates that MTs appear unaffected in OG-treated cells, whereas cryptogein treatment caused a rapid and severe disruption of microtubular network. When hyperstabilized by the MT depolymerization inhibitor, taxol, the MT network was still disrupted by cryptogein treatment. On the other hand, the MT-depolymerizing agent oryzalin and cryptogein had different and complementary effects. In addition to MT destabilization, cryptogein induced the death of tobacco cells, whereas OG-treated cells did not die. We demonstrated that MT destabilization and cell death induced by cryptogein depend on calcium influx and that MT destabilization occurs independently of active oxygen species production. The molecular basis of cryptogein-induced MT disruption and its potential significance with respect to cell death are discussed.

Documentos Relacionados