Diversity and novel pharmacological properties of Ca2+ channels in Drosophila brain membranes.

AUTOR(ES)
RESUMO

Binding studies as well as affinity labelling and immunoblot techniques were used to identify and characterize the receptors for Ca2+ channel blockers in Drosophila brain membranes. Despite structural analogies with mammalian receptors, Drosophila binding sites for phenylalkylamines and 1,4-dihydropyridines, unlike those described in skeletal and cardiac muscle, were found to be located on separate Ca2+ channels. Single-channel bilayer recordings from reconstituted membranes revealed the presence of eight distinct cobalt-sensitive Ba2+-conducting channels in Drosophila brain membrane preparations. In good agreement with binding studies, the most frequently observed Ca2+ channel type (Ba2+ conductance of 13 pS) was extremely sensitive to phenylalkylamines but not affected by micromolar concentrations of 1,4-dihydropyridines. Distinct 1,4-dihydropyridine-sensitive and phenylalkylamine-insensitive channels were also identified. They had unitary Ba2+ conductances of 21 and 31 pS. A detailed analysis of drug action showed that both 1,4-dihydropyridines and phenylalkylamines first increased channel open state probability before fully blocking channel activity. Other types of channels have been identified with unitary Ba2+ conductances of 9, 41, 53, 64 and 81 pS. They were insensitive to the previously described organic Ca2+ channel blockers. The Drosophila system seems to be a unique model to analyse the properties of several different types of Ca2+ channels and particularly those of channel types that are uniquely blocked by phenylalkylamines or uniquely blocked by 1,4-dihydropyridines.

Documentos Relacionados