DNA segregation in Escherichia coli cells with 5-bromodeoxyuridine-substituted nucleoids.

AUTOR(ES)
RESUMO

The pattern of segregation of DNA in Escherichia coli K-12 was analyzed by labeling replicating DNA with 5-bromodeoxyuridine followed by differential staining of nucleoids. Three types of visible arrangement were found in four-nucleoid groups derived from a native nucleoid after two replication rounds. Type A, segregation of both old strands toward cell poles, appeared with the highest frequency (0.6 to 0.8). Type B, segregation of one old strand toward the cell pole and the other toward the cell center, was twice as frequent as type C, segregation of both old strands toward the cell center. These results confirm previous data showing that DNA segregation in E. coli is nonrandom while presenting a certain degree of randomness. The proportions of the three indicated types of arrangement suggest a new probabilistic model to explain the observed segregation pattern. It is proposed that DNA strands segregate either nonrandomly, with a probability of between 0 and 1, or randomly. In nonrandom segregation, both old strands are always directed toward cell poles. Experimental data reported here or by other authors fit better with the predictions of this model than with those of other previously proposed proposed deterministic or probabilistic models.

Documentos Relacionados