Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase.

AUTOR(ES)
RESUMO

Hepatic lipase and lipoprotein lipase hydrolyze fatty acids from triacylglycerols and are critical in the metabolism of circulating lipoproteins. The two lipases are similar in size and amino acid sequence but are distinguished by functional differences in substrate preference and cofactor requirement. Presumably, these distinctions result from structural differences in functional domains. To begin localization of these domains, a chimeric lipase was constructed composed of the N-terminal 329 residues of rat hepatic lipase linked to the C-terminal 136 residues of human lipoprotein lipase. The chimera hydrolyzed both monodisperse short-chain (esterase) and emulsified long-chain (lipase) triacylglycerol substrates with catalytic and kinetic properties closely resembling those of native hepatic lipase. However, monoclonal antibodies to lipoprotein lipase inhibited the lipase activity, but not the esterase function, of the chimera. Therefore, the chimeric molecule is a functional lipase and contains elements and characteristics from both parental enzymes. It is proposed that the N-terminal domain, containing the active center from hepatic lipase, governs the catalytic character of the chimera, and the C-terminal domain is essential for hydrolysis of long-chain substrates.

Documentos Relacionados