Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader.

AUTOR(ES)
RESUMO

The plasmid gene cat-86 is induced by chloramphenicol in Bacillus subtilis, resulting in the synthesis of the gene product chloramphenicol acetyltransferase. Induction is due to a posttranscriptional regulatory mechanism in which the inducer, chloramphenicol, activates translation of cat-86 mRNA. We have suggested that chloramphenicol allows ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the coding sequence. In the present report we show that cat-86 expression can be activated by stalling ribosomes in the act of translating a regulatory leader peptide. Stalling was brought about by starving host cells for specific leader amino acids. Ribosomal stalling, which led to cat-86 expression, occurred upon starvation for the amino acid specified by the leader codon located immediately 5' to the RNA stem-loop structure and was independent of whether that codon specified lysine or tyrosine. These observations support a model for chloramphenicol induction of cat-86 in which the antibiotic stalls ribosome transit in the regulatory leader. Stalling of ribosomes in the leader can therefore lead to destabilization of the RNA stem-loop structure.

Documentos Relacionados