Dynamics of Xanthophyll-Cycle Activity in Different Antenna Subcomplexes in the Photosynthetic Membranes of Higher Plants (The Relationship between Zeaxanthin Conversion and Nonphotochemical Fluorescence Quenching).

AUTOR(ES)
RESUMO

The generation of nonphotochemical quenching of chlorophyll fluorescence (qN) in the antenna of photosystem II (PSII) is accompanied by the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin. The function of zeaxanthin in two mechanisms of qN, energy-dependent quenching (qE) and photoinhibitory quenching (qI), was investigated by measuring the de-epoxidation state in the antenna subcomplexes of PSII during the generation and relaxation of qN under varying conditions. Three different antenna subcomplexes were separated by isoelectric focusing: Lhcb1/2/3, Lhcb5/6, and the Lhcb4/PSII core. Under all conditions, the highest de-epoxidation state was detected in Lhcb1/2/3 and Lhcb5/6. The kinetics of de-epoxidation in these complexes were found to be similar to the formation of qE. The Lhcb4/PSII core showed the most pronounced differences in the de-epoxidation state when illumination with low and high light intensities was compared, correlating roughly with the differences in qI. Furthermore, the epoxidation kinetics in the Lhcb4/PSII core showed the most pronounced differences of all subcomplexes when comparing the epoxidation after either moderate or very strong photoinhibitory preillumination. Our data support the suggestion that zeaxanthin formation/epoxidation in Lhcb1-3 and Lhcb5/6 may be related to qE, and in Lhcb4 (and/or PSII core) to qI.

Documentos Relacionados