Effect of cadmium and zinc on attachment and detachment interactions of Pseudomonas fluorescens H2 with glass.

AUTOR(ES)
RESUMO

The physiological and physicochemical bases for the effect of 5, 10, 50, or 100 micrograms of Cd and Zn ml-1 on the attachment and detachment interactions of Pseudomonas fluorescens H2 with glass substrata were determined. Attachment and detachment varied with the type and concentration of metal and the time at which cells were exposed to the metal. The largely inhibitory effect of the metals on bacterial motility and physiological activity did not directly influence attachment. The amount of Cd or Zn accumulated by the cells increased with metal concentration and was greater for free than for attached cells. The hydrophobicity and negative and positive charges of the bacterial surfaces (measured by hydrophobic and electrostatic interaction chromatography) were increased by cell exposure to the metals, particularly after Cd treatment. Cells exposed to Cd prior to attachment showed increased adhesion. Zinc-treated cells did not. There was a positive correlation between adhesion and Cd concentration in the attachment solution. No such relationship existed for Zn. P. fluorescens H2 exposed to Cd prior to attachment desorbed similarly to untreated controls. Zinc pretreatment resulted in decreased desorption. Cells attached in 5 or 10 micrograms of Cd or Zn ml-1 detached less than those attached in 50 or 100 micrograms of Cd or Zn ml-1. The presence of Cd or Zn during detachment had little effect on desorption. The dominant influence of Cd and Zn on attachment and detachment appears to be through modification of the bacterial surface. In natural ecosystems, heavy metals may influence the distribution of bacteria between the solid and liquid phases.

Documentos Relacionados