Effect of excision repair by diploid human fibroblasts on the kinds and locations of mutations induced by (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene in the coding region of the HPRT gene.

AUTOR(ES)
RESUMO

(+/-)-7 beta,8 alpha-Dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE) is a direct-acting carcinogen that forms DNA adducts only with purines, predominantly (greater than 95%) with guanine. To investigate the effect of nucleotide excision repair on the kinds and locations (spectra) of mutations induced in diploid human fibroblasts by BPDE, we synchronized cells and exposed them to BPDE either at the beginning of S phase just when the target gene hypoxanthine (guanine) phosphoribosyltransferase (HPRT) is replicated or 12 hr prior to the beginning of S phase (early G1 phase). Clones resistant to 6-thioguanine were isolated, and the mRNA in lysates of 100-500 cells from each mutant clone was used to synthesize cDNA. HPRT cDNA was amplified 10(11)-fold by the polymerase chain reaction and then sequenced directly. The mutants derived from the two populations did not differ in the kinds of mutations; 19/20 of the base substitutions in cells taken from S phase and 19/19 of those from G1 phase involved G.C base pairs, predominantly G.C----T.A. However, they differed significantly in the distribution of the mutations in the coding region of the gene. In the cells from G1 phase, 29% of the mutations were clustered within a unique run of six guanine bases; in the S-phase cells, only 4% were located there. Assuming that the premutagenic BPDE-induced lesions involved purines, in the cells treated at the beginning of S phase, 24% of these lesions were located in the transcribed strand, whereas in the G1-treated cells, none were. This suggests that in the HPRT gene of diploid human cells excision repair of BPDE adducts occurs preferentially on the transcribed strand.

Documentos Relacionados