Effect of Grain Size on Bacterial Penetration, Reproduction, and Metabolic Activity in Porous Glass Bead Chambers

AUTOR(ES)
RESUMO

We determined the effects of grain size and nutritional conditions on the penetration rate and metabolic activity of Escherichia coli strains in anaerobic, nutrient-saturated chambers packed with different sizes of glass beads (diameters, 116 to 767 μm) under static conditions. The chambers had nearly equal porosities (38%) but different calculated pore sizes (range, 10 to 65 μm). Motile strains always penetrated faster than nonmotile strains, and nutrient conditions that resulted in faster growth rates (fermentative conditions versus nitrate-respiring conditions) resulted in faster penetration rates for both motile and nonmotile strains for all of the bead sizes tested. The penetration rate of nonmotile strains increased linearly when bead size was increased, while the penetration rate of motile strains became independent of the bead size when beads having diameters of 398 μm or greater were used. The rate of H2 production and the final amount of H2 produced decreased when bead size was decreased. However, the final protein concentrations were similar in chambers packed with 116-, 192-, and 281-μm beads and were only slightly higher in chambers packed with 398- and 767-μm beads. Our data indicated that conditions that favored faster growth rates also resulted in faster penetration times and that the lower penetration rates observed in chambers packed with small beads were due to restriction of bacterial activity in the small pores. The large increases in the final amount of hydrogen produced without corresponding increases in the final amount of protein made indicated that metabolism became uncoupled from cell mass biosynthesis as bead size increased, suggesting that pore size influenced the efficiency of substrate utilization.

Documentos Relacionados