Effect of monodesethyl amodiaquine on human polymorphonuclear neutrophil functions in vitro.

AUTOR(ES)
RESUMO

We have previously observed that the antimalarial drug amodiaquine impairs the human polymorphonuclear neutrophil (PMN) oxidative burst in vitro. However, the drug acted at a concentration of 100 micrograms/ml, far higher than that which is achievable therapeutically. Since amodiaquine is extensively metabolized into monodesethyl amodiaquine, we investigated whether the metabolite modified PMN functions at lower concentrations than amodiaquine does. Monodesethyl amodiaquine strongly depressed PMN chemotaxis and phagocytosis at concentrations as low as 10 micrograms/ml. This inhibition was reversed by washing out the drug. The PMN oxidative burst was markedly depressed by monodesethyl amodiaquine, whatever the assay technique (luminol-amplified chemiluminescence, lucigenin-amplified chemiluminescence, myeloperoxidase activity) or stimulus used (opsonized zymosan, phorbol myristate acetate, formylmethionyl leucyl phenylalanine). There were extreme interindividual variations in sensitivity to the depressive effect of monodesethyl amodiaquine when the PMN oxidative burst was assayed in terms of luminol-amplified chemiluminescence or lucigenin-amplified chemiluminescence. PMN samples were divided into two groups on the basis of the MIC of the drug: 60% of the samples were "highly sensitive," being strongly inhibited at concentrations as low as 0.1 micrograms/ml (obtained during therapy), whereas the "moderately sensitive" samples were inhibited at concentrations of 10 micrograms/ml and above. The difference between the two groups was highly significant. This PMN sensitivity to the inhibitory effect of the drug was not related to intrinsic oxidative metabolism. Our data indicate that monodesethyl amodiaquine, the main metabolite of amodiaquine, has a far stronger inhibitory effect on various PMN functions in vitro than the parent drug, warranting relevant in vivo studies.

Documentos Relacionados