Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response

AUTOR(ES)
FONTE

Cell Stress Society International

RESUMO

Heat and a variety of other stressors cause mammalian cells and tissues to acquire cytoprotection. This transient state of altered cellular physiology is nonproliferative and antiapoptotic. In this study, male Wistar rats were stress conditioned with either stannous chloride or gallium nitrate, which have immunosuppressive effects in vivo and in vitro, or heat shock, the most intensively studied inducer of cytoprotection. The early stages of inflammation in response to topical suffusion of mesentery tissue with formyl-methionyl-leucyl-phenylalanine (FMLP) were monitored using intravital microscopy. Microvascular hemodynamics (venular diameter, red blood cell velocity [Vrbc], white blood cell [WBC] flux, and leukocyte-endothelial adhesion [LEA]) were used as indicators of inflammation, and tissue levels of inducible Hsp70, determined using immunoblot assays, provided a marker of cytoprotection. None of the experimental treatments blocked decreases in WBC flux during FMLP suffusion, an indicator of increased low-affinity interactions between leukocytes and vascular endothelium known as rolling adhesion. During FMLP suffusion LEA, an indicator of firm attachment between leukocytes and vascular endothelial cells increased in placebo and gallium nitrate-treated animals but not in heat- and stannous chloride–treated animals, an anti-inflammatory effect. Hsp70 was not detected in aortic tissue from placebo and gallium nitrate–treated animals, indicating that Hsp70-dependent cytoprotection was not present. In contrast, Hsp70 was detected in aortic tissues from heat- and stannous chloride–treated animals, indicating that these tissues were in a cytoprotected state that was also an anti-inflammatory state.

Documentos Relacionados