Effects of selected inhibitors on electron transport in Neisseria gonorrhoeae.

AUTOR(ES)
RESUMO

The electron transport system of Neisseria gonorrhoeae was partially characterized by using spectrophotometric, spectroscopic, and oxygen consumption measurements. The effects of selected electron transport inhibitors (amytal, rotenone, 2-heptyl-4-hydroxyquinoline, antimycin A1, and potassium cyanide [KCN]) on electron transfer in whole-cell and sonically treated whole-cell preparations of N. gonorrhoeae were examined. The oxidation of reduced nicotinamide adenine dinucleotide, measured as a decrease in absorbance at 340 nm, was inhibited by each of the compounds tested. Oxygen consumption stimulated by reduced nicotinamide adenine dinucleotide was also inhibited, whereas oxygen uptake stimulated by succinate and malate was inhibited by KCN alone, suggesting the presence of a KCN-sensitive terminal oxidase. Room temperature optical difference spectra indicate an operational electron bypass around the amytal-rotenone-binding site. Difference spectra in the presence of 2-heptyl-4-hydroxyquinoline suggest a possible site of interaction of this compound at the substrate side of cytochrome b. Reduced-minus-oxidized spectra of ascorbate-tetramethyl-p-phenylenediamine suggest the participation of b-, a-, and d-type cytochromes in terminal oxidase activity. Hence, N. gonorrhoeae appears to have an electron transport chain containing cytochrome c, two b-type cytochromes (one of which has an oxidase function), and possibly a- and d-type cytochromes. An abbreviated chain exists through which succinate and malate can be oxidized directly by a KCN-sensitive component.

Documentos Relacionados