Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin.

AUTOR(ES)
RESUMO

1. The expression of c-fos mRNA in the rat hypothalamus was examined by in situ hybridization following systemic administration of cholecystokinin (CCK), a procedure known to activate magnocellular oxytocin neurons but not magnocellular vasopressin neurones. 2. Conscious male rats were given a single I.P. injection of 50 micrograms/kg CCK, c-fos mRNA signal was apparent in the supraoptic and paraventricular nuclei in rats killed 10 min after injection but not in uninjected or saline-(vehicle) injected rats. The density of c-fos mRNA at both sites was further elevated in rats killed 30 min or 60 min following injection, and was absent in rats killed 4 h after injection. 3. In the paraventricular nucleus the most dense expression of c-fos mRNA following CCK administration was in the medial, mainly parvocellular portion of the nucleus, in an area corresponding to the distribution of corticotrophin-releasing factor mRNA determined by in situ hybridization in adjacent sections. 4. The I.P. injection of CCK increased plasma oxytocin concentrations, measured by specific radioimmunoassay from 13 +/- 5 pg/ml in control rats to 107 +/- 9 pg/ml in the rats killed 10 min after injection, a similar response to that observed previously in urethane-anaesthetized rats. 5. In each of six urethane-anaesthetized rats, recordings were made from single neurones in the supraoptic nucleus, identified antidronomically as projecting to the posterior pituitary and identified electrophysiologically as putative oxytocin neurones. Following I.P. injection of 50 micrograms/kg CCK, the neurones increased their firing rate by a mean of 1.3 +/- 0.2 spikes/s averaged over the 10 min following injection. 6. From the appearance of c-fos mRNA in supraoptic neurones following CCK administration we conclude that this message is expressed in magnocellular oxytocin neurones, since vasopressin neuronal activity and vasopressin release is known to be unaffected by this stimulus, and since the supraoptic nucleus contains essentially only oxytocin neurones and vasopressin neurones. 7. We conclude that c-fos mRNA expression can be induced in supraoptic oxytocin neurones following brief and modest episodes of electrical activation, suggesting that c-fos may be involved in the gene regulation of these neurones under physiological conditions.

Documentos Relacionados