Electron microscopic evidence for replication of circular Epstein-Barr virus genomes in latently infected Raji cells.

AUTOR(ES)
RESUMO

Raji cells, collected at various times from a synchronized culture, were gently lysed, and the high-molecular-weight DNA was enriched ca. 10-fold for latent Epstein-Barr virus (EBV) genomes by equilibrium density gradient centrifugation in neutral CsCl. The heavy-density DNA pool, which included more than 90% of the total intracellular EBV DNA sequences, was further fractionated by velocity sedimentation on neutral glycerol gradients, and material from fractions containing potential EBV DNA replicative forms was examined in the electron microscope. Early in the cellular S phase, when the EBV DNA content was found to be doubling in parallel with host chromosome replication, half of the 50- to 55-micron circular EBV genomes were observed to have two or more DNA branch points or forks. Most molecules were in a relaxed theta configuration, indicative of the Cairns mode of DNA replication. In the supercoiled state, the two daughter strands of the partially replicated molecules were seen to be wrapped around each other. Two theta structures had more than two DNA forks, indicating that DNA replication can initiate more than once on the same DNA molecule. Late in the S phase, the EBV DNA sedimenting at positions where theta structures were found with early S phase samples was composed of catenated dimers rather than partially replicated genomes. It is concluded that the circular EBV genomes, which are the major intracellular form in latently infected cells, are maintained as independent replicons and are not synthesized from an integrated template.

Documentos Relacionados