Energetics and stereochemistry of DNA complexation with the antitumor AT specific intercalators tilorone and m-AMSA.

AUTOR(ES)
RESUMO

Computations by the SIBFA method on the intercalative interaction energies of tilorone and m-AMSA with B-DNA representative oligonucleotides account for the specificity of these antitumor drugs for AT sites and minor groove intercalation. In tilorone this specificity is due to the strong preference of the side chains for the minor groove, which overcomes the preference of the chromophore for a GC intercalation site. In m-AMSA the specificity is due to the combined preference of both the chromophore and the anilino side chain for AT intercalation site and minor groove, respectively. o-AMSA is shown to manifest a similar (although significantly less pronounced specificity) as m-AMSA but a higher affinity for DNA. A comparison of the energetics and stereochemistry of intercalative binding to DNA of m-AMSA (AT minor groove specific) and 9-aminoacridine-4-carboxamide (GC major groove specific), which possess the same chromophore and differ only by the nature and position of the side chains, shows the possibility of important variations in the intercalative behaviour of chromophoric drugs as a function of the substituent groups attached to them.

Documentos Relacionados