Envelopment of Sindbis Virus: Synthesis and Organization of Proteins in Cells Infected with Wild Type and Maturation-Defective Mutants

AUTOR(ES)
RESUMO

The synthesis and organization of Sindbis virus structural proteins was investigated in BHK cells infected with wild-type virus (SVHR) or temperature-sensitive (ts) mutants defective in maturation. Cells infected with ts-23 or ts-20 (complementation groups D and E) were similar in the polypeptides synthesized at the nonpermissive temperature and differed from SVHR-infected cells in that the envelope protein E2 was not cleaved from the PE2 precursor. Data from experiments utilizing pulse-chase procedures or protein synthesis inhibitors indicated that although infectious virions were released from cells infected with these mutants in shift-down experiments, the particles were produced almost exclusively from proteins synthesized after the return to permissive temperature. This suggests that a stable complex may be formed among the structural proteins before budding. A membrane fraction isolated from cells infected with either ts mutants or SVHR contained the PE2, E1, and C polypeptides, whereas E2 was restricted to fractions obtained from SVHR-infected cells. Although equivalent amounts of virus-specific protein were synthesized in cells infected with either mutant and the cells contained qualitatively the same proteins in the isolated membranes, cells infected with ts-23 did not have virus-specific proteins exposed on their surface that could be detected by ferritin-conjugated antibody-labeling procedures or lactoperoxidase-mediated iodination. In contrast, ts-20-infected cells had significant amounts of viral protein, mainly E1, that could be detected on the plasma membrane by either procedure. Iodine was incorporated into E1 and E2 on the surface of SVHR-infected cells in the same relative amounts as seen in iodinated virions. PE2, however, although present in membranes, could not be iodinated on the surface of infected cells under any of the conditions used in this study. We also monitored the relative efficiency with which these viral proteins could be removed from intact cells by dilute solutions of nonionic detergents. The results indicated that E2 was most efficiently removed, followed by E1. PE2 (the precursor to E2) and C remained associated with the cell and could be subsequently isolated in the membrane fraction.

Documentos Relacionados