Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein.

AUTOR(ES)
RESUMO

Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human colon and ileocecum. Two separate loci (tia and tib) that direct noninvasive E. coli HB101 to adhere to and invade intestinal epithelial cells have previously been cosmid cloned from ETEC H10407. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cellular fractions from tib-positive HB101 shows that the tib locus directs the synthesis of a 104-kDa outer membrane protein (the TibA protein). The tib locus was subcloned to a maximum of 6.7 kb and mutagenized with transposon Tn5. Production of TibA was directly correlated with the capacity of the subclones and Tn5 mutants to invade and adhere to epithelial cells, suggesting that TibA was required for these phenotypes. The position and direction of transcription of the tibA gene were identified by complementation and in vivo T7 RNA polymerase-promoter induction experiments. The role of the tib locus in epithelial cell invasion was confirmed by the construction of chromosomal deletion derivatives in H10407. These deletion mutants invaded epithelial cells at about 15% of the parental level and were fully complemented by plasmids bearing the tib locus. The size and function of the TibA protein are similar to those of invasin from Yersinia pseudotuberculosis (103 kDa). However, a tib probe did not hybridize with the gene encoding invasin. Hybridization analyses of genomic DNA from a wide variety of pathogenic and nonpathogenic bacteria, including Salmonella, Shigella, Yersinia, and Escherichia species, indicate that the tib locus is unique to specific ETEC strains.

Documentos Relacionados