Estudo do comportamento de fases de sistemas agua-hidrocarbonetos

AUTOR(ES)
DATA DE PUBLICAÇÃO

1995

RESUMO

Cubic equations of state have been widely used in the chemical and petroleum industry for thermodynamic property calculation. In the presence of polar substances that self-associate through hidrogen bonding (like water or alcohol), these equations are of very limited use. Some systems of industrial interest can include molecules of very different size, like long-chain hydrocarbons or polimers. In these cases, cubic equations of state also fail to predict equilibrium properties. In order to solve these problems, several models were published in the literature, some of them involving some kind of tuning of cubic equations while others involve developing new ones with the inclusion of a chemical term. In this work we extend the Cubic Simplified Perturbed Hard Chain Theory (CSPHCT) for systems where one of the compounds self-associates, through the addition of a chemical term. The capacity of the physical model (CSPHCT) in the prediction of the properties of long-chain hydrocarbons was analyzed. We calculated the saturation pressure of n-hexadecane and bubble point pressure of the system methane/n-hexadecane. In both cases, the CSPHCT predictions were in good agreement with experimental data...Note: The complete abstract is available with the full electronic digital thesis or dissertations

ASSUNTO(S)

equilibrio liquido-vapor termodinamica hidrocarbonetos equações de estado

Documentos Relacionados