Evidence for two distinct intracellular pools of inorganic sulfate in Penicillium notatum.

AUTOR(ES)
RESUMO

A strain of Penicillium notatum unable to metabolize inorganic sulfate can accumulate sulfate internally to an apparent equilibrium concentration 10(5) greater than that remaining in the medium. The apparent Keq is near constant at all initial external sulfate concentrations below that which would eventually exceed the internal capacity of the cells. Under equilibrium conditions of zero net flux, external 35SO42- exchanges with internal, unlabeled SO42- at a rate consistent with the kinetic constants with the sulfate transport system. Efflux experiments demonstrated that sulfate occupies two distinct intracellular pools. Pool 1 is characterized by the rapid release of 35SO42- when the suspension of preloaded cells is adjusted to 10 mM azide at pH 8.4 (t 1/2, 0.38 min). 35SO42- in pool 1 also rapidly exchanges with unlabeled medium sulfate. Pool 2 is characterized by the slow release of 35SO42- induced by azide at pH 8.4 or unlabeled sulfate (t 1/2, 32 to 49 min). Early in the 35SO42- accumulation process, up to 78% of the total transported substrate is found in pool 1. At equilibrium, pool 1 accounts for only about 2% of the total accumulated 35SO42-. The kinetics of 35SO42- accumulation is consistent with the following sequential process: medium----pool 1----pool 2. Monensin (33 microns) accelerates the transfer of 35SO42- from pool 1 to pool 2. Valinomycin (0.2 microM) and tetraphenylboron- (1 mM) retard the transfer of 35SO42- from pool 1 to pool 2. At the concentrations used, neither of the ionophores nor tetraphenylboron- affect total 35SO42- uptake. Pool 2 may reside in a vacuole or other intracellular organelle. A model for the transfer of sulfate from pool 1 to pool 2 is presented.

Documentos Relacionados