Evidence from in vitro replication that O6-methylguanine can adopt multiple conformations.

AUTOR(ES)
RESUMO

The effect of O6-methylguanine (m6G) on replication, in a partially double-stranded defined 25-base oligonucleotide, has been studied under nonlimiting conditions of unmodified dNTPs and over an extended time period, using the Klenow fragment of Escherichia coli DNA polymerase I. The sequence surrounding m6G has flanking cytosines (C-m6G-C), and the initial steady-state kinetics have been reported. When the primer was annealed so that the first base to be replicated was m6G, replication was virtually complete in approximately 5 min, although the reaction appears biphasic. When annealed with a primer where thymine or cytosine is paired opposite template m6G, about half the molecules were replicated in the first 15 sec, and no significant further replication was seen over a 1-hr period. When m6G was dealkylated by DNA-O6-methylguanine-methyltransferase, replication was rapid with no blockage. These data suggest that there can be two (or more) conformations of m6G. In these studies the term syn refers to conformers interfering with base-pairing, whereas anti refers to those allowing such base-pairing. Previous physical studies by others indicate that syn- and anti-conformers of the methyl group relative to the N1 of guanine are possible. Here molecular modeling/computational studies are described, suggesting that syn- and anti-m6G can be of similar energy in DNA, and, therefore, these two conformers may explain the two types of species observed during in vitro replication. An alternative explanation could be the possibility that the different species may manifest differential interactions of m6G with Klenow fragment. These results may provide a rationale for why m6G lesions in vivo have been reported to be lethal as well as mutagenic.

Documentos Relacionados