Evolution under Fertility and Viability Selection

AUTOR(ES)
RESUMO

Evolution at a single multiallelic locus under arbitrary weak selection on both fertility and viability is investigated. Discrete, nonoverlapping generations are posited for autosomal and X-linked loci in dioecious populations, but monoecious populations are studied in both discrete and continuous time. Mating is random. The results hold after several generations have elapsed. With an error of order s [i.e., O(s)], where s represents the selection intensity, the population evolves in Hardy-Weinberg proportions. Provided the change per generation of the fertilities and viabilities due to their explicit time dependence (if any) is O(s 2), the rate of change of the deviation from Hardy-Weinberg proportions is O(s2). If the change per generation of the viabilities and genotypic fertilities is smaller than second order [i.e., o(s2)], then to O(s 2) the rate of change of the mean fitness is equal to the genic variance. The mean fitness is the product of the mean fertility and the mean viability; in dioecious populations, the latter is the unweighted geometric mean of the mean viabilities of the two sexes. Hence, as long as there is significant gene frequency change, the mean fitness increases. If it is the fertilities of matings that change slowly [at rate o(s 2)], the above conclusions apply to a modified mean fitness, defined as the product of the mean viability and the square root of the mean fertility.

Documentos Relacionados