Experimental Population Genetics of Meiotic Drive Systems. III. Neutralization of Sex-Ratio Distortion in Drosophila through Sex-Chromosome Aneuploidy

AUTOR(ES)
RESUMO

Laboratory populations of Drosophila melanogaster were challenged by pseudo-Y drive, which mimics true Y-chromosome meiotic drive through the incorporation of Segregation Distorter (SD) in a T(Y;2) complex. This causes extreme sex-ratio distrotion and can ultimately lead to population extinction. Populations normally respond by the gradual accumulation of drive suppressors, and this reduction in strength of distortion allows the sex ratio to move closer to the optimal value of 1:1. One population monitored, however, was rapidly able to neutralize the effects of sex-ratio distortion by the accumulation of sex-chromosome aneuploids (XXY, XYY). This apparently occurs because XX-bearing eggs, produced in relatively high numbers (∼4%) by XXY genotypes, become the main population source of females under strong Y-chromosome drive. Computer simulation for a discrete generation model incorporating random mating with differences in fitness and segregation permits several predictions that can be compared to the data. First, sex-chromosome aneuploids should rapidly attain equilibrium, while stabilizing the population at ∼60% males. This sex ratio should be roughly independent of the strength of the meiotic drive. Moreover, conditions favoring the accumulation of drive suppressors (e.g., weak distortion, slow population extinction) are insufficient for maintaining aneuploidy, while conditions favoring aneuploidy (e.g., strong distortion, low production of females) lead to population extinction before drive suppressors can accumulate. Thus, the different mechanisms for neutralizing sex-ratio distortion are complementary. In addition, Y drive and sex-chromosome aneuploidy are potentially co-adaptive, since under some conditions neither will survive alone. Finally, these results suggest the possibility that genetic variants promoting sex-chromosome nondisjunction may have a selective advantage in natural populations faced with sex-ratio distortion.

Documentos Relacionados