Exposure of Phytopathogenic Xanthomonas spp. to Lethal Concentrations of Multiple Oxidants Affects Bacterial Survival in a Complex Manner

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

During plant-microbe interactions and in the environment, Xanthomonas campestris pv. phaseoli is likely to be exposed to high concentrations of multiple oxidants. Here, we show that simultaneous exposures of the bacteria to multiple oxidants affects cell survival in a complex manner. A superoxide generator (menadione) enhanced the lethal effect of an organic peroxide (tert-butyl hydroperoxide) by 1,000-fold; conversely, treatment of cells with menadione plus H2O2 resulted in 100-fold protection compared to that for cells treated with the individual oxidants. Treatment of X. campestris with a combination of H2O2 and tert-butyl hydroperoxide elicited no additive or protective effect. High levels of catalase alone are sufficient to protect cells against the lethal effect of menadione plus H2O2 and tert-butyl hydroperoxide plus H2O2. These data suggest that H2O2 is the lethal agent responsible for killing the bacteria as a result of these treatments. However, increased expression of individual genes for peroxide (alkyl hydroperoxide reductase, catalase)- and superoxide (superoxide dismutase)-scavenging enzymes or concerted induction of oxidative stress-protective genes by menadione gave no protection against killing by a combination of menadione plus tert-butyl hydroperoxide. However, X. campestris cells in the stationary phase and a spontaneous H2O2-resistant mutant (X. campestris pv. phaseoli HR) were more resistant to killing by menadione plus tert-butyl hydroperoxide. These findings give new insight into oxidant killing of Xanthomonas spp. that could be generally applied to other bacteria.

Documentos Relacionados