Fatty Acid Specificity and Selectivity of the Chloroplast sn-Glycerol 3-Phosphate Acyltransferase of the Chilling Sensitive Plant, Amaranthus lividus

AUTOR(ES)
RESUMO

Chilling sensitivity of plants is strongly correlated with the presence of high levels of a species of chloroplast phosphatidylglycerol that contains two saturated fatty acids. The most straightforward synthetic pathway for this lipid would require the primary acylation of sn-glycerol 3-phosphate (G3P) with a saturated fatty acid (palmitic acid) rather than with oleic acid, an unsaturated acid. This selective incorporation would differ markedly from the reported properties of the chloroplast G3P acyltransferases of pea and spinach, two chilling resistant plants and thus we have studied the chloroplast G3P acyltransferase of Amaranthus lividus, a chilling sensitive plant. In contrast to our results and those of others (M. Frentzen et al. 1983 Eur J Biochem 129: 629-636 and previous work) with the pea and spinach enzymes, the amaranthus chloroplast G3P acyltranferase did not select oleic acid donors from a mixture of oleic and palmitic acid donors (either coenzyme A or acyl carrier protein thioesters). Instead the fatty acid composition of the synthesized 1-acyl G3P faithfully reflected the composition of the acyl donor mixture. However, the amaranthus enzyme did strongly select against incorporation of stearic acid. The properties of the amaranthus G3P acyltransferase are consistent with this enzyme having the major role in synthesis of the disaturated phosphatidylglycerol species.

Documentos Relacionados