Feline leukemia virus subgroup C phenotype evolves through distinct alterations near the N terminus of the envelope surface glycoprotein.

AUTOR(ES)
RESUMO

Feline leukemia viruses (FeLVs) belonging to the C subgroup induce aplastic anemia in domestic cats and have the ability, unique among FeLV strains, to proliferate in guinea pig fibroblasts in tissue culture. Previous studies have shown that the pathogenic and host range specificity of a prototype molecular clone of FeLV-C [FeLV-Sarma-C (FSC)] colocalize to a region encoding the 3' 73 amino acids of the pol gene product and the N-terminal 241 amino acids of the envelope surface glycoprotein named SU. Here, we amplified, via PCR, cloned, and sequenced the SU coding sequence from three additional anemia-inducing subgroup C FeLV isolates. Chimeric viruses were constructed by replacement of fragments of FeLV-C envelope genes into the FeLV-A prototype virus 61E. Using a modified vesicular stomatitis virus-FeLV pseudotype assay, we demonstrated that the subgroup C receptor specificity for each virus was determined by changes within the N-terminal 87-92 amino acids of SU, in which most changes occurred within the 15- to 20-amino-acid first variable region (V1). Determinants for growth in guinea pig cells colocalized to this region. Despite the consistent localization of biological determinants, the only consistent features that distinguished the deduced FeLV-A and FeLV-C proteins was one lysine-to-arginine change and a structural prediction of an alpha-helix in FeLV-A proteins versus random coil in FeLV-C proteins within V1. However, arginine in equilibrium with lysine substitutions were not sufficient to convert the subgroup A virus to the subgroup C phenotype or vice versa. Thus, certain distinct structural changes within the N-terminal region of FeLV SU can result in convergent viral phenotypes.

Documentos Relacionados