Fluid Secretion in Isolated Proximal Straight Renal Tubules EFFECT OF HUMAN UREMIC SERUM

AUTOR(ES)
RESUMO

We have examined the effect of normal and uremic human sera on the transtubular flow of fluid in isolated perfused segments of rabbit proximal convoluted and straight renal tubules. Proximal convoluted and straight tubules absorbed fluid from the lumen when the external bath was normal rabbit serum. Normal human sera in the bath depressed net fluid absorption in both tubular segments, but more importantly, uremic human serum caused proximal straight tubules to secrete fluid into the lumen. Fluid secretion was also demonstrated indirectly by observing in nonperfused proximal straight, but not proximal convoluted tubules, that the normally collapsed lumens opened widely in uremic serum. Nonperfused proximal straight tubules developed expanded lumens even after a 25-fold dilution of human uremic serum with normal rabbit serum, whereas lumen expansion occurred only in undiluted normal human serum, on the average. Serum from acutely uremic rabbits possessed secretory activity but normal rabbit serum did not. The secretory effect of uremic sera in proximal straight tubules was inhibited by cooling and ouabain and probenecid. The secretory activity of uremic sera was removed by dialysis, but not by freezing or boiling. Para-aminohippurate and benzoate caused fluid secretion in proximal straight tubules but urea, creatinine, guanidinosuccinate, and urate did not. On the basis of these results, we suggest that the secretory factor in serum may be a substance or group of substances possibly related to the hippurate class of organic molecules that are accumulated to relatively high concentrations in renal failure. The secretory material in the serum of uremic patients may significantly influence the transport of salt and water in relatively intact residual nephrons.

Documentos Relacionados