Fluorine-19 nuclear magnetic resonance study of codon-anticodon interaction in 5-fluorouracil-substituted E. coli transfer RNAs.

AUTOR(ES)
RESUMO

Codon-anticodon interaction was investigated in fully active 5-fluorouracil-substituted E. coli tRNAVal1 (anticodon FAC) by 19F NMR spectroscopy. Binding of the codon GpUpA results in the upfield shift of a 19F resonance at 3.9 ppm in the central region of the 19F NMR spectrum, whereas trinucleotides not complementary to the anticodon have no effect. The same 19F resonance shifts upfield upon formation of an anticodon-anticodon dimer between the 19F-labeled tRNA and E. coli tRNATyr2 (anticodon QUA). These results permit assignment of the peak at 3.9 ppm to the 5-fluorouracil at position 34 in the anticodon of fluorouracil-substituted tRNAVal1. The methionine codon ApUpG also causes a sequence-specific upfield shift of a peak in the central part of the 19F NMR spectrum of fluorinated E. coli tRNAMetm. However, ApUpG has no effect on the 19F spectrum of 19F-labeled E. coli tRNAMetf, indicating possible conformational differences between the anticodon loop of initiator and chain-elongating methionine tRNAs. 19F NMR experiments detect no binding of CpGpApA to the complementary FpFpCpG (replaces Tp psi pCpG) in the T-loop of 5-fluorouracil-substituted tRNAVal1, in the presence or absence of codon, suggesting that the tertiary interactions between the T- and D-loops are not disrupted by codon-anticodon interactions.

Documentos Relacionados