Freeze-Induced Membrane Ultrastructural Alterations in Rye (Secale cereale) Leaves.

AUTOR(ES)
RESUMO

Freezing injury in protoplasts isolated from leaves of nonaccli-mated rye (Secale cereale cv Puma) is associated with the formation of the inverted hexagonal (HII) phase. However, in protoplasts from cold-acclimated rye, injury is associated with the occurrence of localized deviations in the fracture plane, a lesion referred to as the "fracture-jump lesion." To establish that these ultrastructural consequences of freezing are not unique to protoplasts, we have examined the manifestations of freezing injury in leaves of non-acclimated and cold-acclimated rye by freeze-fracture electron microscopy. At -10[deg]C, injury in nonacclimated leaves was manifested by the appearance of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and by the frequent occurrence of the HII phase. The HII phase was not observed in leaves of cold-acclimated rye frozen to -35[deg]C. Rather, injury was associated with the occurrence of the fracture-jump lesion between the plasma membrane and closely appressed cytoplasmic membranes. Studies of the time dependence of HII phase formation in nonacclimated leaves indicated that freeze-induced dehydration requires longer times in leaves than in isolated protoplasts. These results demonstrate that the freeze-induced formation of the HII phase in nonacclimated rye and the fracture-jump lesion in cold-acclimated rye are not unique to protoplasts but also occur in the leaves from which the protoplasts are isolated.

Documentos Relacionados