Gas Exchange Analysis of the Relative Importance of Stomatal and Biochemical Factors in Photosynthetic Induction in Alocasia macrorrhiza1

AUTOR(ES)
RESUMO

When leaves of Alocasia macrorrhiza adapted to 10 micromole quanta per square meter per second were transferred to 500 micromole quanta per square meter per second, the rate of photosynthetic CO2 assimilation increased for over 45 minutes. For the first 10 to 15 minutes, increases in both stomatal conductance and the leaf's photosynthetic capacity were responsible for the increase in assimilation rate. Thereafter, continuing increases in stomatal conductance were almost entirely responsible for further increases in assimilation rate. When conductances were initially high, assimilation rates 1 minute after the increase in photon flux density could be more than six times as high as for similar leaves with initially low conductance. Further increases in assimilation rate in these leaves with high conductance were predominantly due to increases in the induction state at the biochemical level and followed an exponential time course. When stomatal conductances were initially low, then increases in conductance were predominantly responsible for the increases in assimilation rate, with both following a sigmoidal time course. In these leaves, it was important to also consider the effect of cuticular water loss on the calculation of the intracellular partial pressure of CO2, and an assessment of the relative importance of stomatal conductance differed considerably from one that did not include cuticular water loss.

Documentos Relacionados