Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli.

AUTOR(ES)
RESUMO

Fifteen strains of Escherichia coli with MICs of ciprofloxacin (CIP) between 0.015 and 256 micrograms/ml were examined for the presence of mutations in the quinolone resistance-determining region of the gyrA gene and in an analogous region of the parC gene. No mutation was found in a susceptible isolate (MIC of CIP, 0.015 microgram/ml). Four moderately resistant strains (MIC of CIP 0.06 to 4 micrograms/ml) carried one gyrA mutation affecting serine 83, but in only one strain was an additional parC mutation (Gly-78 to Asp) detected. All ten highly resistant strains examined (MIC of CIP, > 4 micrograms/ml) carried two gyrA mutations affecting residues serine 83 and aspartate 87, and at least one parC mutation. These parC mutations included alterations of serine 80 to arginine or isoleucine and glutamate 84 to glycine or lysine. The parC+ and two mutant alleles (parCI-80 and parCI-80,G-84) were inserted into the mobilizable vector pBP507. Transfer of a plasmid-coded parC+ allele into parC+ strains did not alter the susceptibilities towards ciprofloxacin or nalidixic acid, while a significant increase in susceptibility was detectable for parC mutants. This increase, however, did not restore wild-type susceptibility, whereas transfer of a plasmid-coded gyrA+ allele alone or in combination with parC+ did. These data are in agreement with the view that topoisomerase IV is a secondary, less sensitive target for quinolone action in Escherichia coli and that the development of high-level fluoroquinolone resistance in E. coli requires at least one parC mutation in addition to the gyrA mutation(s).

Documentos Relacionados