Genetic Studies of Acridine-Induced Mutants in STREPTOCOCCUS PNEUMONIAE

AUTOR(ES)
RESUMO

The mutagenic properties of acridines on pneumococcus are described. All seven acridines tested were mutagenic at the amiA locus conferring a resistance to 10-5 m aminopterin. The effects of quinacrine were more specifically investigated. It was observed that: mutants can be obtained only by treatment of exponentially growing cells; a sharp maximum mutagenic effect occurs at a concentration slightly lower than the bacteriostatic value; and the amount of quinacrine required to yield the maximum mutagenic effect decreases with the pH of the medium. Moreover, the number of mutants detected after quinacrine treatment varies from locus to locus. The majority of quinacrine-induced mutants are readily reverted by quinacrine, but not by nitrosoguanidine treatment. This suggests that in pneumococcus quinacrine induces mainly frameshift mutations. A further study of the revertants obtained by quinacrine treatment of quinacrine-induced mutants strengthens this interpretation: most of the revertants result from a mutation at the same site; some partial revertants exhibiting an intermediate resistance to aminopterin were found to contain two very closely linked mutated sites, each mutation conferring the maximum level of resistance to aminopterin. Thus, the majority of quinacrine-induced mutants at the amiA locus of pneumococcus consists of frameshift mutations. Nearly all of the isolated mutants induced by quinacrine as well as other acridines belong to the low efficiency class of transformation. It was concluded that the mismatch resulting from the pairing between the wild type and the frameshift-containing sequence is recognized by the excision-repair system involved in the discrimination function in a way similar to that in which it recognizes mismatched base pairs between a transition mutation and the wild-type sequence.

Documentos Relacionados