Genome-Wide Analysis of mRNA Stability Using Transcription Inhibitors and Microarrays Reveals Posttranscriptional Control of Ribosome Biogenesis Factors

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Using DNA microarrays, we compared global transcript stability profiles following chemical inhibition of transcription to rpb1-1 (a temperature-sensitive allele of yeast RNA polymerase II). Among the five inhibitors tested, the effects of thiolutin and 1,10-phenanthroline were most similar to rpb1-1. A comparison to various microarray data already in the literature revealed similarity between mRNA stability profiles and the transcriptional response to stresses such as heat shock, consistent with the fact that the general stress response includes a transient shutoff of general mRNA transcription. Genes encoding factors involved in rRNA synthesis and ribosome assembly, which are often observed to be coordinately down-regulated in yeast microarray data, were among the least stable transcripts. We examined the effects of deletions of genes encoding deadenylase components Ccr4p and Pan2p and putative RNA-binding proteins Pub1p and Puf4p on the genome-wide pattern of mRNA stability after inhibition of transcription by chemicals and/or heat stress. This examination showed that Ccr4p, the major yeast mRNA deadenylase, contributes to the degradation of transcripts encoding both ribosomal proteins and rRNA synthesis and ribosome assembly factors and mediates a large part of the transcriptional response to heat stress. Pan2p and Puf4p also contributed to the degradation rate of these mRNAs following transcriptional shutoff, while Pub1p preferentially stabilized transcripts encoding ribosomal proteins. Our results indicate that the abundance of ribosome biogenesis factors is controlled at the level of mRNA stability.

Documentos Relacionados