Growth phase-dependent regulation and membrane localization of SpaB, a protein involved in biosynthesis of the lantibiotic subtilin.

AUTOR(ES)
RESUMO

The information responsible for biosynthesis of the lantibiotic subtilin is organized in an operon-like structure that starts with the spaB gene. The spaB gene encodes an open reading frame consisting of 1,030 amino acid residues, and it was calculated that a protein having a theoretical molecular mass of 120.5 kDa could be produced from this gene. This is consistent with the apparent molecular weight for SpaB of 115,000 which was estimated after sodium dodecyl sulfate-gel electrophoresis and identification with SpaB-specific antibodies. The SpaB protein is very similar to proteins EpiB and NisB, which were identified previously as being involved in epidermin and nisin biosynthesis. Upstream from SpaB a characteristic sigma A promoter sequence was identified. An immunoblot analysis revealed that SpaB expression was strongly regulated. No SpaB protein was detected in the early logarithmic growth phase, and maximum SpaB expression was observed in the early stationary growth phase. The expression of SpaB was strongly correlated with subtilin biosynthesis. Deletion mutations in either of two recently identified regulatory genes, spaR and spaK, which act as a "two-component" regulatory system necessary for growth phase-dependent induction of subtilin biosynthesis (C. Klein, C. Kaletta, and K. D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), also resulted in failure of SpaB expression. To investigate the intracellular localization of SpaB, vesicles of Bacillus subtilis were prepared. The SpaB protein cosedimented with the vesicle fraction and was released only after vigorous resuspension of the vesicles. Our results suggest that SpaB is membrane associated and that subtilin biosynthesis occurs at the cytoplasmic membrane of B. subtilis.

Documentos Relacionados