Hepatitis B viral antigenic structure: signature analysis by monoclonal radioimmunoassays.

AUTOR(ES)
RESUMO

An approach has been developed for the analysis of hepatitis B viral (HBV) antigenic structure that creates numerical "signatures" of HBV strains. This technique employs high-affinity IgM and IgG monoclonal antibodies (anti-HBsAg) directed toward distinct and separate determinants on hepatitis B surface antigen (HBsAg). Such antibodies have been used to develop sensitive and specific radioimmuno-assays for measurement of HBsAg-associated determinants in serum. In performing "signature" analysis separate binding curves for each monoclonal anti-HBsAg are generated by measuring immunoreactivity in serial dilutions of HBsAg-positive serum. Since the HBsAg concentration in serum is unknown, the binding profiles of groups of samples from the same "classic" HBV subtype are aligned by an iterative maximum likelihood procedure to give the numerical signature of that HBV subtype. By using this approach, HBsAg shows far more antigenic heterogeneity than previously recognized by polyvalent anti-HBsAg antibodies. Indeed, there are subgroups within the classic HBsAg subtypes. In addition, the a domain (common to all known subtypes or strains of HBV) has been shown to be multideterminant. Thus, these studies have demonstrated heretofore unrecognized differences in HBV subtypes. This approach also has broader significance for the study of subtle or major antigenic changes among other viral agents since it is not necessary to know the concentration of virus or viral protein in complex protein mixtures.

Documentos Relacionados