High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature.

AUTOR(ES)
RESUMO

Attempts were made to maximize the expression of ice nuclei in Pseudomonas syringae T1 isolated from a tomato leaf. Nutritional starvation for nitrogen, phosphorous, sulfur, or iron but not carbon at 32 degrees C, coupled to a shift to 14 to 18 degrees C, led to the rapid induction of type 1 ice nuclei (i.e., ice nuclei active at temperatures warmer than -5 degrees C). Induction was most pronounced in stationary-phase cells that were grown with sorbitol as the carbon source and cooled rapidly, and under optimal conditions, the expression of type 1 ice nuclei increased from < 1 per 10(7) cells (i.e., not detectable) to 1 in every cell in 2 to 3 h. The induction was blocked by protein and RNA synthesis inhibitors, indicative of new gene expression. Pulse-labeling of nongrowing cultures with [35S]methionine after a shift to a low temperature demonstrated that the synthesis of a new set of "low-temperature" proteins was induced. Induced ice nuclei were stable at a low temperature, with no loss in activity at 4 degrees C after 8 days, but after a shift back to 32 degrees C, type 1 ice nuclei completely disappeared, with a half-life of approximately 1 h. Repeated cycles of low-temperature induction and high-temperature turnover of these ice nuclei could be demonstrated with the same nongrowing cells. Not all P. syringae strains from tomato or other plants were fully induced under the same culture conditions as strain T1, but all showed increased expression of type 1 ice nuclei after the shift to the low temperature. In support of this view, analysis of the published DNA sequence preceding the translational start site of the inaZ gene (R. L. Green and G. Warren, Nature [London] 317:645-648, 1985) suggests the presence of a gearbox-type promoter (M. Vincente, S. R. Kushner, T. Garrido, and M. Aldea, Mol. Microbiol. 5:2085-2091, 1991).

Documentos Relacionados