Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid.

AUTOR(ES)
RESUMO

Congenital malformations now represent the largest single cause of mortality in the infant of the diabetic mother. The mechanism by which diabetes exerts its teratogenic effects is not known. This study evaluated whether arachidonic acid might be involved, a possibility raised by the role of arachidonic acid in palatal elevation and fusion, processes analogous to neural tube folding and fusion. This hypothesis was tested in two animal models of diabetic embryopathy, the in vivo pregnant diabetic rat and the in vitro hyperglycemic mouse embryo culture. The subcutaneous injection of arachidonic acid (200-400 mg/kg per day) into pregnant diabetic rats during the period of organ differentiation (days 6-12) did not alter the maternal glucose concentration, the maternal weight gain, or the weight of the embryos. However, the incidence of neural tube fusion defects was reduced from 11% to 3.8% (P less than 0.005), the frequency of cleft palate was reduced from 11% to 4% (P less than 0.005), and the incidence of micrognathia was reduced from 7% to 0.8% (P less than 0.001). The addition of arachidonic acid to B10.A mouse embryos in culture also resulted in a reversal of hyperglycemia-induced teratogenesis. The teratogenic effect of D-glucose (8 mg/ml) in the medium resulted in normal neural tube fusion in only 32% of the embryos (P less than 0.006 when compared to controls). Arachidonic acid supplementation (1 or 10 micrograms/ml) produced a rate of neural tube fusion (67%) that was not significantly different from that observed in controls. The evidence presented indicates that arachidonic acid supplementation exerts a significant protective effect against the teratogenic action of hyperglycemia in both in vivo (rat) and in vitro (mouse) animal models. These data therefore suggest that the mechanism mediating the teratogenic effect of an increased glucose concentration involves a functional deficiency of arachidonic acid at a critical stage of organogenesis.

Documentos Relacionados