Identificação e caracterização funcional dos elementos cis-regulatorios da miostatina / Identification and functional characterization of the cis-regulatory elements of myostatin

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

The Myostatin protein (also known as GDF8) is a member of the transforming growth factor-β (TGF-β) superfamily and is expressed almost exclusively in skeletal muscle, both in the embryo and in the adult, where the protein circulates in the blood flow. It was initially identified in 1997 by MCPHERRON et al., and since then many studies have been demonstrating its essential role in the regulation of the development of skeletal muscle from birds and mammals. The knockout of the Myostatin gene causes both hyperplasia and hypertrophy of the skeletal muscle fibers, resulting in muscles twice as big as the wildtype ones, thus showing that Myostatin is a negative regulator of skeletal muscle deposition. The GDF8 structure and function is conserved in many species, including humans where the Myostatin levels are increased during dystrophy conditions and in the cachexia that accompanies some types of cancer and AIDS. A better understanding of the mechanisms that rule the Myostatin expression is essential for the development of strategies that might regulate its activity during such conditions. In this research, we have identified, with the use of bioinformatic tools, the cis-regulatory elements (promoter and enhancers) that regulate the Myostatin gene transcription. We compared the GDF8 loci from human, chicken and mouse and found different evolutionary conserved regions (ECRs), adjacent to the GDF8 coding sequence. Because these intergenic sequences remained relatively conserved throughout evolution, they supposedly have a functional role, possibly as cis-regulatory elements for the Myostatin gene. Our analyses revealed the presence of seven possible enhancers downstream of the GDF8 gene and one conserved region upstream of it. In order to understand the role these regions might have in the regulation of Myostatin´s transcription activity, we searched for binding sites that were also evolutionary conserved. Many conserved binding sites were observed in the RECs downstream to the Myostatin gene, and among them are sites for factors related to the development of the skeletal muscle (MyoD, Myogenin, E47, EN1), limbs (Pax3, Tbx5) and heart (Nkx2.5, AREB6, Pitx2). Together, these data suggest a modular regulation of the Myostatin gene during vertebrates’ embryogenesis. The only REC observed upstream of the Myostatin locus represents the putative basal gene promoter. This hypothesis is strengthened by the presence of a binding site for the Tata Binding Protein conserved for the studied species. In this research, we aimed at functionally characterizing the Myostatin gene basal promoter. For that purpose, we cloned the studied region in a promoterless vector, which contains GFP as a reporter gene. This expression construct was then tested through in ovo electroporation assays. The analysis of the electroporated embryos revealed that the cloned DNA region is capable of driving the transcription of the reporter gene, which indicates that it truly corresponds to the basal promoter of the Myostatin gene. Moreover, there are conserved binding sites for the CREB and ATF1 transcription factors in the basal promoter, which are activated by the cAMP signaling path. This finding is in agreement with recent studies that demonstrate the involvement of cAMP in the regulation of the myogenic factors Myf5 and MyoD, as well as Pax3, thus suggesting that the activity of the Myostatin gene might be under the influence of this signaling path. Other regions of the human genome that have a similar architecture to the one observed in the Myostatin promoter were identified. This demonstrates that other genes are possibly under the influence of the same signaling path regulating the activity of the Myostatin promoter, among them genes involved in myogenesis and neurogenesis.

ASSUNTO(S)

cis-regulatory myostatin regiões promotoras (genetica) cis-regulatorios miostatina promoter regions (genetics)

Documentos Relacionados