Identification of a novel enhancer element mediating calcium-dependent induction of gene expression in response to either epidermal growth factor or activation of protein kinase C.

AUTOR(ES)
RESUMO

The VL30 family of defective murine retroviruses consists of 100 to 200 members, of which fewer than 5% appear to be transcriptionally active. A genomic clone of the transcriptionally active VL30 element RVL-3 was identified and sequenced. Genetic analysis indicated that a triple-repeat sequence within the RVL-3 long terminal repeat is capable of functioning as an inducible enhancer element responding to a variety of agonists. In Rat-1 fibroblasts, the ability of the RVL-3 enhancer to mediate induction of gene expression from a heterologous promoter in response to either epidermal growth factor (EGF) or phorbol ester treatment required coelevation of intracellular calcium. Two CArG boxes present in the triple-repeat sequence appeared to exert a negative effect on gene expression, as mutation of these sequences elevated the basal level of expression observed without altering the fold induction in response to either EGF or protein kinase C activation. In the presence of these CArG elements, mutation of AP-1-like sites adjacent to the CArG elements significantly inhibited the ability of either EGF or phorbol esters to induce gene expression. The effect of mutating these AP-1-like sites was relieved by simultaneous mutation of the CArG sites, indicating that interactions among these sites modulate RVL-3 expression. Mutational analysis and gel mobility shift experiments have identified a third sequence within the VL30 triple-repeat element that is required for the induction of gene expression and serves as a binding site for nuclear proteins. Sequence comparisons indicate that this enhancer element has not been described previously.

Documentos Relacionados