Immune interferon inhibits proliferation and induces 2'-5'-oligoadenylate synthetase gene expression in human vascular smooth muscle cells.

AUTOR(ES)
RESUMO

Proliferation of vascular smooth muscle cells (SMC) contributes to formation of the complicated human atherosclerotic plaque. These lesions also contain macrophages, known to secrete SMC mitogens, and T lymphocytes. Many of the SMC in the lesions express class II major histocompatibility antigens, an indication that activated T cells secrete immune IFN-gamma locally in the plaque. We therefore studied the effect of IFN-gamma on the proliferation of cultured SMC derived from adult human blood vessels. IFN-gamma (1,000 U/ml) reduced [3H]thymidine (TdR) incorporation into DNA by SMC stimulated with the well-defined mitogens IL 1 (from 15.3 +/- 0.7 to 6.2 +/- 0.7 dpm X 10(-3)/24 h) or platelet-derived growth factor (PDGF) (from 18.5 +/- 1.0 to 7.3 +/- 0.7 dpm X 10(-3)/24 h). Kinetic and nuclear labeling studies indicated that this effect of IFN-gamma was not due to altered thymidine transport or specific radioactivity of TdR in the cell. In longer term experiments (4-16 d) IFN-gamma prevented net DNA accumulation by SMC cultures stimulated by PDGF. IFN-gamma also delayed (from 30 to 60 min) the time to peak level of c-fos RNA in IL 1-treated SMC. It is unlikely that cytotoxicity caused these effects of IFN-gamma, as the inhibition of growth was reversible and we detected no cell death in SMC cultures exposed to this cytokine. Activation of 2'-5' oligoadenylate synthetase gene expression may mediate certain antiproliferative and antiviral effects of interferons. Both IFN-gamma and type I IFNs (IFN-alpha or IFN-beta) induced 2'-5' oligoadenylate synthetase mRNA and enzyme activity in SMC cultures, but with concentration dependence and time course that may not account for all of IFN-gamma's cytostatic effect on SMC. The accumulation of SMC in human atherosclerotic lesions is a long-term process that must involve altered balance between growth stimulatory and inhibitory factors. The cytostatic effect of IFN-gamma on human SMC demonstrated here may influence this balance during human atherogenesis, because T cells present in the complicated atherosclerotic plaque likely produce this cytokine.

Documentos Relacionados