Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis.

AUTOR(ES)
RESUMO

We have studied the capacity of a selected fraction of Mycobacterium tuberculosis extracellular proteins (EP) released into broth culture by mid-logarithmic-growth-phase organisms to induce cell-mediated immune responses and protective immunity in a guinea pig model of pulmonary tuberculosis. Guinea pigs infected with M. tuberculosis by aerosol but not uninfected control guinea pigs exhibit strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. Guinea pigs immunized subcutaneously with EP but not sham-immunized control guinea pigs also develop strong cell-mediated immune responses to EP, manifest by dose-dependent cutaneous delayed-type hypersensitivity and splenic lymphocyte proliferation. EP is nonlethal and nontoxic to guinea pigs upon subcutaneous immunization. Guinea pigs immunized with EP and then challenged with aerosolized M. tuberculosis exhibit protective immunity. In five independent experiments, EP-immunized guinea pigs were consistently protected against clinical illness, including weight loss. Compared with EP-immunized guinea pigs, sham-immunized control guinea pigs lost 12.9 +/- 2.0% (mean +/- SE) of their total weight. EP-immunized guinea pigs also had a 10-fold reduction in viable M. tuberculosis bacilli in their lungs and spleens (P = 0.004 and 0.001, respectively) compared with sham-immunized control animals. In the two experiments in which some guinea pigs died after aerosol challenge, EP-immunized animals were protected from death. Whereas all 12 (100%) EP-immunized guinea pigs survived challenge with aerosolized M. tuberculosis, only 6 of 12 (50%) sham-immunized control guinea pigs survived challenge (P = 0.007, Fisher exact test). This study demonstrates that actively growing M. tuberculosis cells release immunoprotective molecules extracellularly, that a subunit vaccine against tuberculosis is feasible, and that extracellular molecules of M. tuberculosis are potential candidates for a subunit vaccine.

Documentos Relacionados