In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600.

AUTOR(ES)
RESUMO

An in vitro study of the multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600 was performed. Phenol-stimulated oxygen uptake from crude extracts was strictly dependent on the addition of NAD(P)H and Fe2+ to assay mixtures. Five of six polypeptides required for growth on phenol were necessary for in vitro activity. One of the polypeptides was purified to homogeneity and found to be a flavin adenine dinucleotide containing iron-sulfur protein with significant sequence homology, at the amino terminus, to plant-type ferredoxins. This component, as in other oxygenase systems, probably functions to transfer electrons from NAD(P)H to the iron-requiring oxygenase component. Phenol hydroxylase from this organism is thus markedly different from bacterial flavoprotein monooxygenases commonly used for hydroxylation of other phenolic compounds, but bears a number of similarities to multicomponent oxygenase systems for unactivated compounds.

Documentos Relacionados