In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system.

AUTOR(ES)
RESUMO

A coupled in vitro protein-synthesizing system has been developed with components derived totally from Bacillus subtilis. The system synthesized specific gene products from various exogenous DNA templates, including B. subtilis phage phi 29, plasmid pUB110, and a heterologous B. subtilis-Escherichia coli gene fusion containing the transposon Tn9-derived chloramphenicol acetyltransferase (cat) gene. The gene fusion product was able to show CAT activity, bind specifically to a Sephacryl-chloramphenicol column, and react immunologically against anti-CAT antiserum. The fidelity of this in vitro system was demonstrated by the synthesis of gene products identical to that made in vivo. We suggest that this system may be used to study the regulation of gene expression in vitro.

Documentos Relacionados